Nuprl Lemma : ite_and_reduce

[b1,b2:𝔹]. ∀[x,y:Top].  (if b1 then if b2 then else fi  else fi  if b1 ∧b b2 then else fi )


Proof




Definitions occuring in Statement :  band: p ∧b q ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  band: p ∧b q bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False
Lemmas referenced :  bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesisEquality thin extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination isectElimination because_Cache productElimination independent_isectElimination sqequalRule dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination voidElimination axiomSqEquality inhabitedIsType isect_memberEquality universeIsType

Latex:
\mforall{}[b1,b2:\mBbbB{}].  \mforall{}[x,y:Top].
    (if  b1  then  if  b2  then  x  else  y  fi    else  y  fi    \msim{}  if  b1  \mwedge{}\msubb{}  b2  then  x  else  y  fi  )



Date html generated: 2019_10_15-AM-10_46_40
Last ObjectModification: 2018_09_27-AM-09_41_11

Theory : basic


Home Index