Nuprl Lemma : ite_false

b:𝔹. ∀[x:ℙ]. (if then else False fi  ⇐⇒ (↑b) ∧ x)


Proof




Definitions occuring in Statement :  assert: b ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] prop: all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q false: False
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q true: True prop: rev_implies:  Q bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb false: False
Lemmas referenced :  bool_wf eqtt_to_assert true_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesisEquality thin introduction extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination isectElimination productElimination independent_isectElimination sqequalRule isect_memberFormation_alt independent_pairFormation natural_numberEquality productEquality cumulativity universeIsType universeEquality dependent_pairFormation promote_hyp dependent_functionElimination instantiate equalityTransitivity equalitySymmetry independent_functionElimination because_Cache voidElimination

Latex:
\mforall{}b:\mBbbB{}.  \mforall{}[x:\mBbbP{}].  (if  b  then  x  else  False  fi    \mLeftarrow{}{}\mRightarrow{}  (\muparrow{}b)  \mwedge{}  x)



Date html generated: 2019_10_15-AM-10_46_33
Last ObjectModification: 2018_09_27-AM-09_41_14

Theory : basic


Home Index