Nuprl Lemma : ite_false
∀b:𝔹. ∀[x:ℙ]. (if b then x else False fi  
⇐⇒ (↑b) ∧ x)
Proof
Definitions occuring in Statement : 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
false: False
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
false: False
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
true_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesisEquality, 
thin, 
introduction, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
isectElimination, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
isect_memberFormation_alt, 
independent_pairFormation, 
natural_numberEquality, 
productEquality, 
cumulativity, 
universeIsType, 
universeEquality, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
because_Cache, 
voidElimination
Latex:
\mforall{}b:\mBbbB{}.  \mforall{}[x:\mBbbP{}].  (if  b  then  x  else  False  fi    \mLeftarrow{}{}\mRightarrow{}  (\muparrow{}b)  \mwedge{}  x)
Date html generated:
2019_10_15-AM-10_46_33
Last ObjectModification:
2018_09_27-AM-09_41_14
Theory : basic
Home
Index