Nuprl Lemma : nat-inf-infinity_wf

∞ ∈ ℕ∞


Proof




Definitions occuring in Statement :  nat-inf-infinity: nat-inf: ℕ∞ member: t ∈ T
Definitions unfolded in proof :  nat-inf-infinity: all: x:A. B[x] implies:  Q assert: b ifthenelse: if then else fi  btrue: tt true: True member: t ∈ T prop: uall: [x:A]. B[x] nat: subtype_rel: A ⊆B top: Top nat-inf: ℕ∞ so_lambda: λ2x.t[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A and: P ∧ Q so_apply: x[s]
Lemmas referenced :  le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties all_wf nat_wf top_wf btrue_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lambdaFormation hypothesis natural_numberEquality lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality lambdaEquality addEquality setElimination rename hypothesisEquality isect_memberEquality voidElimination voidEquality intEquality dependent_set_memberEquality functionEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality independent_pairFormation computeAll because_Cache

Latex:
\minfty{}  \mmember{}  \mBbbN{}\minfty{}



Date html generated: 2016_05_15-PM-01_46_58
Last ObjectModification: 2016_01_15-PM-11_17_12

Theory : basic


Home Index