Nuprl Lemma : ni-iterated-min_wf

[n:ℕ]. ∀[f:ℕn ⟶ ℕ∞].  (ni-iterated-min(n;f) ∈ ℕ∞)


Proof




Definitions occuring in Statement :  ni-iterated-min: ni-iterated-min(n;f) nat-inf: ℕ∞ int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ni-iterated-min: ni-iterated-min(n;f) nat:
Lemmas referenced :  primrec_wf nat-inf_wf nat-inf-infinity_wf ni-min_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality lambdaEquality applyEquality natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}\minfty{}].    (ni-iterated-min(n;f)  \mmember{}  \mBbbN{}\minfty{})



Date html generated: 2016_05_15-PM-01_48_47
Last ObjectModification: 2015_12_27-AM-00_08_50

Theory : basic


Home Index