Nuprl Lemma : ni-iterated-min_wf
∀[n:ℕ]. ∀[f:ℕn ⟶ ℕ∞].  (ni-iterated-min(n;f) ∈ ℕ∞)
Proof
Definitions occuring in Statement : 
ni-iterated-min: ni-iterated-min(n;f)
, 
nat-inf: ℕ∞
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ni-iterated-min: ni-iterated-min(n;f)
, 
nat: ℕ
Lemmas referenced : 
primrec_wf, 
nat-inf_wf, 
nat-inf-infinity_wf, 
ni-min_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}\minfty{}].    (ni-iterated-min(n;f)  \mmember{}  \mBbbN{}\minfty{})
Date html generated:
2016_05_15-PM-01_48_47
Last ObjectModification:
2015_12_27-AM-00_08_50
Theory : basic
Home
Index