Nuprl Lemma : ni-min_wf
∀[f,g:ℕ∞].  (ni-min(f;g) ∈ ℕ∞)
Proof
Definitions occuring in Statement : 
ni-min: ni-min(f;g), 
nat-inf: ℕ∞, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
nat-inf: ℕ∞, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ni-min: ni-min(f;g), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
uimplies: b supposing a, 
cand: A c∧ B, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
assert: ↑b, 
true: True, 
bfalse: ff, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}
Lemmas referenced : 
band_wf, 
nat_wf, 
assert_of_band, 
bool_cases_sqequal, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
assert_wf, 
bool_wf, 
eqtt_to_assert, 
equal_wf, 
all_wf, 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
dependent_set_memberEquality, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
because_Cache, 
addEquality, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
functionEquality, 
axiomEquality
Latex:
\mforall{}[f,g:\mBbbN{}\minfty{}].    (ni-min(f;g)  \mmember{}  \mBbbN{}\minfty{})
Date html generated:
2017_10_01-AM-08_30_00
Last ObjectModification:
2017_07_26-PM-04_24_17
Theory : basic
Home
Index