Nuprl Lemma : ni-min_wf
∀[f,g:ℕ∞].  (ni-min(f;g) ∈ ℕ∞)
Proof
Definitions occuring in Statement : 
ni-min: ni-min(f;g)
, 
nat-inf: ℕ∞
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
nat-inf: ℕ∞
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ni-min: ni-min(f;g)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
assert: ↑b
, 
true: True
, 
bfalse: ff
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
Lemmas referenced : 
band_wf, 
nat_wf, 
assert_of_band, 
bool_cases_sqequal, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
assert_wf, 
bool_wf, 
eqtt_to_assert, 
equal_wf, 
all_wf, 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
dependent_set_memberEquality, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
because_Cache, 
addEquality, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
functionEquality, 
axiomEquality
Latex:
\mforall{}[f,g:\mBbbN{}\minfty{}].    (ni-min(f;g)  \mmember{}  \mBbbN{}\minfty{})
Date html generated:
2017_10_01-AM-08_30_00
Last ObjectModification:
2017_07_26-PM-04_24_17
Theory : basic
Home
Index