Nuprl Lemma : ni-min_wf

[f,g:ℕ∞].  (ni-min(f;g) ∈ ℕ∞)


Proof




Definitions occuring in Statement :  ni-min: ni-min(f;g) nat-inf: ℕ∞ uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  nat-inf: ℕ∞ uall: [x:A]. B[x] member: t ∈ T ni-min: ni-min(f;g) all: x:A. B[x] implies:  Q uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a cand: c∧ B nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: band: p ∧b q ifthenelse: if then else fi  btrue: tt assert: b true: True bfalse: ff bool: 𝔹 unit: Unit it: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  band_wf nat_wf assert_of_band bool_cases_sqequal nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf assert_wf bool_wf eqtt_to_assert equal_wf all_wf set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename sqequalRule dependent_set_memberEquality lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination applyEquality functionExtensionality hypothesisEquality hypothesis lambdaFormation productElimination independent_isectElimination dependent_functionElimination because_Cache addEquality natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll equalityElimination equalityTransitivity equalitySymmetry independent_functionElimination functionEquality axiomEquality

Latex:
\mforall{}[f,g:\mBbbN{}\minfty{}].    (ni-min(f;g)  \mmember{}  \mBbbN{}\minfty{})



Date html generated: 2017_10_01-AM-08_30_00
Last ObjectModification: 2017_07_26-PM-04_24_17

Theory : basic


Home Index