Nuprl Lemma : type-functor-sum_wf
∀[F,G:Functor].  (F + G ∈ Functor)
Proof
Definitions occuring in Statement : 
type-functor-sum: p + q
, 
type-functor: Functor
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
type-functor: Functor
, 
type-functor-sum: p + q
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
compose: f o g
, 
cand: A c∧ B
, 
squash: ↓T
, 
prop: ℙ
, 
label: ...$L... t
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
istype-universe, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
subtype_rel_self, 
isect_subtype_rel_trivial, 
subtype_rel_wf, 
type-functor_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
dependent_set_memberEquality_alt, 
dependent_pairEquality_alt, 
lambdaEquality_alt, 
unionEquality, 
applyEquality, 
hypothesisEquality, 
because_Cache, 
universeIsType, 
universeEquality, 
isect_memberEquality_alt, 
unionElimination, 
inlEquality_alt, 
lambdaFormation_alt, 
hypothesis, 
functionIsType, 
inhabitedIsType, 
dependent_functionElimination, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
equalityIsType1, 
independent_functionElimination, 
isectIsType, 
introduction, 
extract_by_obid, 
inrEquality_alt, 
unionIsType, 
imageElimination, 
independent_pairFormation, 
productIsType, 
equalityIsType3, 
baseClosed, 
applyLambdaEquality, 
functionExtensionality, 
natural_numberEquality, 
imageMemberEquality, 
independent_isectElimination, 
instantiate, 
cumulativity, 
functionEquality, 
isectEquality, 
closedConclusion, 
dependent_pairFormation_alt
Latex:
\mforall{}[F,G:Functor].    (F  +  G  \mmember{}  Functor)
Date html generated:
2019_10_15-AM-10_47_04
Last ObjectModification:
2018_10_11-PM-06_49_56
Theory : basic
Home
Index