Nuprl Lemma : int-product-union-atom-disjoint
∀[T,S,A,B:Type].  (¬ℤ ⋂ (T × S) ⋃ (A + B) ⋃ Atom)
Proof
Definitions occuring in Statement : 
isect2: T1 ⋂ T2
, 
b-union: A ⋃ B
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
product: x:A × B[x]
, 
union: left + right
, 
int: ℤ
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
prop: ℙ
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
pi2: snd(t)
, 
bfalse: ff
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
has-value: (a)↓
, 
top: Top
Lemmas referenced : 
isect2_decomp, 
b-union_wf, 
equal_wf, 
isatom-implies-not-isint, 
atom_subtype_base, 
value-type-has-value, 
atom-value-type, 
assert_wf, 
bfalse_wf, 
has-value_wf_base, 
is-exception_wf, 
btrue_wf, 
top_wf, 
isect2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
productEquality, 
cumulativity, 
hypothesisEquality, 
unionEquality, 
atomEquality, 
hypothesis, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
because_Cache, 
sqequalRule, 
isintReduceTrue, 
natural_numberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
imageElimination, 
unionElimination, 
equalityElimination, 
voidElimination, 
applyEquality, 
independent_isectElimination, 
isatomReduceTrue, 
isintCases, 
divergentSqle, 
instantiate, 
baseClosed, 
sqequalAxiom, 
isect_memberEquality, 
voidEquality, 
lambdaEquality, 
universeEquality
Latex:
\mforall{}[T,S,A,B:Type].    (\mneg{}\mBbbZ{}  \mcap{}  (T  \mtimes{}  S)  \mcup{}  (A  +  B)  \mcup{}  Atom)
Date html generated:
2018_05_21-PM-10_19_14
Last ObjectModification:
2017_07_26-PM-06_36_53
Theory : eval!all
Home
Index