Nuprl Lemma : is-list-prop1

[t:Base]. t ∈ Base List supposing (is-list(t))↓


Proof




Definitions occuring in Statement :  is-list: is-list(t) list: List has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T base: Base
Definitions unfolded in proof :  prop: member: t ∈ T uimplies: supposing a uall: [x:A]. B[x] is-list: is-list(t) nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] and: P ∧ Q nat_plus: + decidable: Dec(P) or: P ∨ Q has-value: (a)↓ subtype_rel: A ⊆B pi2: snd(t) cons: [a b] btrue: tt it: nil: []
Lemmas referenced :  base_wf has-value_wf_base nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than fun_exp0_lemma strictness-apply bottom_diverge istype-universe istype-base subtract-1-ge-0 fun_exp_unroll_1 decidable__lt intformnot_wf int_formula_prop_not_lemma has-value-implies-dec-ispair int_subtype_base cons_wf has-value-implies-dec-isaxiom nil_wf
Rules used in proof :  hypothesisEquality baseClosed closedConclusion baseApply sqequalRule isectElimination extract_by_obid introduction instantiate thin hypothesis sqequalHypSubstitution cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution compactness setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  independent_pairFormation universeIsType voidElimination axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType because_Cache dependent_set_memberEquality_alt unionElimination callbyvalueCallbyvalue callbyvalueReduce applyEquality

Latex:
\mforall{}[t:Base].  t  \mmember{}  Base  List  supposing  (is-list(t))\mdownarrow{}



Date html generated: 2020_05_20-AM-09_07_41
Last ObjectModification: 2020_01_17-AM-09_06_05

Theory : eval!all


Home Index