Nuprl Lemma : is-list-prop1
∀[t:Base]. t ∈ Base List supposing (is-list(t))↓
Proof
Definitions occuring in Statement : 
is-list: is-list(t)
, 
list: T List
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
base: Base
Definitions unfolded in proof : 
prop: ℙ
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
is-list: is-list(t)
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
has-value: (a)↓
, 
subtype_rel: A ⊆r B
, 
pi2: snd(t)
, 
cons: [a / b]
, 
btrue: tt
, 
it: ⋅
, 
nil: []
Lemmas referenced : 
base_wf, 
has-value_wf_base, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
fun_exp0_lemma, 
strictness-apply, 
bottom_diverge, 
istype-universe, 
istype-base, 
subtract-1-ge-0, 
fun_exp_unroll_1, 
decidable__lt, 
intformnot_wf, 
int_formula_prop_not_lemma, 
has-value-implies-dec-ispair, 
int_subtype_base, 
cons_wf, 
has-value-implies-dec-isaxiom, 
nil_wf
Rules used in proof : 
hypothesisEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
sqequalRule, 
isectElimination, 
extract_by_obid, 
introduction, 
instantiate, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
compactness, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
dependent_set_memberEquality_alt, 
unionElimination, 
callbyvalueCallbyvalue, 
callbyvalueReduce, 
applyEquality
Latex:
\mforall{}[t:Base].  t  \mmember{}  Base  List  supposing  (is-list(t))\mdownarrow{}
Date html generated:
2020_05_20-AM-09_07_41
Last ObjectModification:
2020_01_17-AM-09_06_05
Theory : eval!all
Home
Index