Nuprl Lemma : length-if-co-list-sq
∀[T:Type]. ∀[t:colist(T)]. ∀[n:ℕ].  ||t|| ~ n supposing ||t|| = n ∈ partial(ℤ)
Proof
Definitions occuring in Statement : 
length: ||as||
, 
colist: colist(T)
, 
partial: partial(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
universe: Type
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
length-in-bar-int-if-co-list, 
subtype_base_sq, 
int_subtype_base, 
equal_wf, 
partial_wf, 
subtype_rel_set, 
le_wf, 
inclusion-partial, 
int-value-type, 
nat_wf, 
colist_wf, 
termination-equality, 
value-type-has-value, 
set-value-type
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
introduction, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
applyEquality, 
sqequalRule, 
because_Cache, 
lambdaEquality, 
natural_numberEquality, 
universeEquality, 
independent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].  \mforall{}[n:\mBbbN{}].    ||t||  \msim{}  n  supposing  ||t||  =  n
Date html generated:
2016_05_15-PM-10_10_12
Last ObjectModification:
2015_12_27-PM-05_59_03
Theory : eval!all
Home
Index