Nuprl Lemma : length-if-co-list-sq

[T:Type]. ∀[t:colist(T)]. ∀[n:ℕ].  ||t|| supposing ||t|| n ∈ partial(ℤ)


Proof




Definitions occuring in Statement :  length: ||as|| colist: colist(T) partial: partial(T) nat: uimplies: supposing a uall: [x:A]. B[x] int: universe: Type sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} prop: subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q cand: c∧ B
Lemmas referenced :  length-in-bar-int-if-co-list subtype_base_sq int_subtype_base equal_wf partial_wf subtype_rel_set le_wf inclusion-partial int-value-type nat_wf colist_wf termination-equality value-type-has-value set-value-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality introduction instantiate cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom applyEquality sqequalRule because_Cache lambdaEquality natural_numberEquality universeEquality independent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].  \mforall{}[n:\mBbbN{}].    ||t||  \msim{}  n  supposing  ||t||  =  n



Date html generated: 2016_05_15-PM-10_10_12
Last ObjectModification: 2015_12_27-PM-05_59_03

Theory : eval!all


Home Index