Nuprl Lemma : union-product-disjoint
∀[T,S,A,B:Type].  (¬A + B ⋂ T × S)
Proof
Definitions occuring in Statement : 
isect2: T1 ⋂ T2
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
product: x:A × B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
isect2_wf, 
btrue_neq_bfalse, 
isect2_decomp, 
isect2_subtype_rel2, 
equal_wf, 
btrue_wf, 
isect2_subtype_rel, 
bfalse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
productEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
universeEquality, 
isect_memberEquality, 
rename, 
independent_pairFormation, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
unionElimination
Latex:
\mforall{}[T,S,A,B:Type].    (\mneg{}A  +  B  \mcap{}  T  \mtimes{}  S)
Date html generated:
2018_05_21-PM-10_19_09
Last ObjectModification:
2017_07_26-PM-06_36_51
Theory : eval!all
Home
Index