Nuprl Lemma : fpf-rename-dom2
∀[A,C:Type]. ∀[eqa:EqDecider(A)]. ∀[eqc:EqDecider(C)]. ∀[eqc':Top]. ∀[r:A ⟶ C]. ∀[f:a:A fp-> Top]. ∀[a:A].
  {↑r a ∈ dom(rename(r;f)) supposing ↑a ∈ dom(f)}
Proof
Definitions occuring in Statement : 
fpf-rename: rename(r;f), 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
guard: {T}, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
guard: {T}, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
fpf-rename: rename(r;f), 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
pi1: fst(t), 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
exists: ∃x:A. B[x]
Lemmas referenced : 
assert-deq-member, 
map_wf, 
assert_witness, 
deq-member_wf, 
assert_wf, 
fpf-dom_wf, 
fpf_wf, 
top_wf, 
deq_wf, 
member_map, 
and_wf, 
l_member_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
applyEquality, 
independent_functionElimination, 
lambdaEquality, 
functionEquality, 
universeEquality, 
dependent_pairFormation, 
independent_pairFormation
Latex:
\mforall{}[A,C:Type].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[eqc:EqDecider(C)].  \mforall{}[eqc':Top].  \mforall{}[r:A  {}\mrightarrow{}  C].  \mforall{}[f:a:A  fp->  Top].
\mforall{}[a:A].
    \{\muparrow{}r  a  \mmember{}  dom(rename(r;f))  supposing  \muparrow{}a  \mmember{}  dom(f)\}
Date html generated:
2018_05_21-PM-09_26_50
Last ObjectModification:
2018_02_09-AM-10_22_11
Theory : finite!partial!functions
Home
Index