Nuprl Lemma : DCC-order-type-less-ext

DCC(WFO{i:l}();order-type-less())


Proof




Definitions occuring in Statement :  WFO: WFO{i:l}() order-type-less: order-type-less() DCC: DCC(T;<)
Definitions unfolded in proof :  member: t ∈ T pi1: fst(t) compose: g lt_int: i <j btrue: tt it: bfalse: ff subtract: m genrec-ap: genrec-ap spreadn: spread4 spreadn: spread3 DCC-order-type: DCC-order-type() DCC-order-type-less any: any x bool_cases_sqequal complete-nat-induction-ext uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  DCC-order-type-less lifting-strict-spread has-value_wf_base base_wf is-exception_wf top_wf equal_wf lifting-strict-less strict4-decide strict4-spread bool_cases_sqequal complete-nat-induction-ext
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueApply baseApply closedConclusion hypothesisEquality applyExceptionCases inrFormation imageMemberEquality imageElimination inlFormation because_Cache sqequalSqle divergentSqle callbyvalueDecide unionEquality unionElimination sqleReflexivity dependent_functionElimination independent_functionElimination decideExceptionCases axiomSqleEquality exceptionSqequal callbyvalueSpread productEquality productElimination spreadExceptionCases

Latex:
DCC(WFO\{i:l\}();order-type-less())



Date html generated: 2018_05_21-PM-07_14_29
Last ObjectModification: 2018_05_19-PM-04_45_23

Theory : general


Home Index