Nuprl Lemma : accum_filter_rel_wf
∀[T,A:Type]. ∀[a,b:A]. ∀[X:T List]. ∀[P:{x:T| (x ∈ X)}  ⟶ ℙ]. ∀[f:A ⟶ {x:T| (x ∈ X)}  ⟶ A].
  (b = accum(z,x.f[z;x],a,{x∈X|P[x]}) ∈ ℙ)
Proof
Definitions occuring in Statement : 
accum_filter_rel: b = accum(z,x.f[z; x],a,{x∈X|P[x]})
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
accum_filter_rel: b = accum(z,x.f[z; x],a,{x∈X|P[x]})
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
l_member_wf, 
list_wf, 
equal_wf, 
list_accum_wf, 
all_wf, 
list-subtype, 
subtype_rel_list_set
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
functionEquality, 
hypothesisEquality, 
setEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
isect_memberEquality, 
because_Cache, 
cumulativity, 
universeEquality, 
productEquality, 
lambdaEquality, 
applyEquality, 
productElimination, 
independent_isectElimination, 
setElimination, 
rename, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[T,A:Type].  \mforall{}[a,b:A].  \mforall{}[X:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  X)\}    {}\mrightarrow{}  \mBbbP{}].  \mforall{}[f:A  {}\mrightarrow{}  \{x:T|  (x  \mmember{}  X)\}    {}\mrightarrow{}  A].
    (b  =  accum(z,x.f[z;x],a,\{x\mmember{}X|P[x]\})  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-04_32_54
Last ObjectModification:
2015_12_27-PM-02_48_40
Theory : general
Home
Index