Nuprl Lemma : append_is_nil_test

[a,b:Top List].
  ((([] (a b) ∈ (Top List)) ∨ ((a b) [] ∈ (Top List)))  ((b [] ∈ (Top List)) ∧ (a [] ∈ (Top List))))


Proof




Definitions occuring in Statement :  append: as bs nil: [] list: List uall: [x:A]. B[x] top: Top implies:  Q or: P ∨ Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q and: P ∧ Q cand: c∧ B or: P ∨ Q uiff: uiff(P;Q) uimplies: supposing a prop:
Lemmas referenced :  append_is_nil top_wf or_wf equal_wf list_wf nil_wf append_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution unionElimination thin equalitySymmetry hypothesis lemma_by_obid isectElimination hypothesisEquality productElimination independent_isectElimination independent_pairFormation because_Cache sqequalRule lambdaEquality dependent_functionElimination independent_pairEquality axiomEquality isect_memberEquality

Latex:
\mforall{}[a,b:Top  List].    ((([]  =  (a  @  b))  \mvee{}  ((a  @  b)  =  []))  {}\mRightarrow{}  ((b  =  [])  \mwedge{}  (a  =  [])))



Date html generated: 2016_05_15-PM-03_21_38
Last ObjectModification: 2015_12_27-PM-01_04_25

Theory : general


Home Index