Nuprl Lemma : append_is_nil_test
∀[a,b:Top List].
  ((([] = (a @ b) ∈ (Top List)) ∨ ((a @ b) = [] ∈ (Top List))) ⇒ ((b = [] ∈ (Top List)) ∧ (a = [] ∈ (Top List))))
Proof
Definitions occuring in Statement : 
append: as @ bs, 
nil: [], 
list: T List, 
uall: ∀[x:A]. B[x], 
top: Top, 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
and: P ∧ Q, 
cand: A c∧ B, 
or: P ∨ Q, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
prop: ℙ
Lemmas referenced : 
append_is_nil, 
top_wf, 
or_wf, 
equal_wf, 
list_wf, 
nil_wf, 
append_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
equalitySymmetry, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[a,b:Top  List].    ((([]  =  (a  @  b))  \mvee{}  ((a  @  b)  =  []))  {}\mRightarrow{}  ((b  =  [])  \mwedge{}  (a  =  [])))
Date html generated:
2016_05_15-PM-03_21_38
Last ObjectModification:
2015_12_27-PM-01_04_25
Theory : general
Home
Index