Nuprl Lemma : band-to-and
∀[a,b:𝔹].  {(a ~ tt) ∧ (b ~ tt)} supposing a ∧b b ~ tt
Proof
Definitions occuring in Statement : 
band: p ∧b q, 
btrue: tt, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
and: P ∧ Q, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
guard: {T}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False
Lemmas referenced : 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
thin, 
because_Cache, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
extract_by_obid, 
isectElimination, 
hypothesis, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
independent_pairFormation, 
independent_pairEquality, 
sqequalAxiom, 
sqequalIntensionalEquality, 
applyEquality, 
baseClosed, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
isect_memberEquality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[a,b:\mBbbB{}].    \{(a  \msim{}  tt)  \mwedge{}  (b  \msim{}  tt)\}  supposing  a  \mwedge{}\msubb{}  b  \msim{}  tt
Date html generated:
2017_10_01-AM-09_12_23
Last ObjectModification:
2017_07_26-PM-04_48_04
Theory : general
Home
Index