Nuprl Lemma : bor-to-and
∀[a,b:𝔹].  {(a ~ ff) ∧ (b ~ ff)} supposing a ∨bb ~ ff
Proof
Definitions occuring in Statement : 
bor: p ∨bq
, 
bfalse: ff
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
and: P ∧ Q
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
bor: p ∨bq
, 
ifthenelse: if b then t else f fi 
, 
cand: A c∧ B
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
thin, 
because_Cache, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
extract_by_obid, 
isectElimination, 
hypothesis, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
independent_pairFormation, 
independent_pairEquality, 
sqequalAxiom, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
sqequalIntensionalEquality, 
baseClosed, 
applyEquality, 
isect_memberEquality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[a,b:\mBbbB{}].    \{(a  \msim{}  ff)  \mwedge{}  (b  \msim{}  ff)\}  supposing  a  \mvee{}\msubb{}b  \msim{}  ff
Date html generated:
2017_10_01-AM-09_12_27
Last ObjectModification:
2017_07_26-PM-04_48_06
Theory : general
Home
Index