Nuprl Lemma : decide-ite

[b:𝔹]. ∀[x,y,f,g:Top].
  (case if then else fi  of inl(a) => f[a] inr(a) => g[a] if b
  then case of inl(a) => f[a] inr(a) => g[a]
  else case of inl(a) => f[a] inr(a) => g[a]
  fi )


Proof




Definitions occuring in Statement :  ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] top: Top so_apply: x[s] decide: case of inl(x) => s[x] inr(y) => t[y] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False
Lemmas referenced :  bool_wf eqtt_to_assert top_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality thin extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination isectElimination productElimination independent_isectElimination sqequalRule sqequalAxiom isect_memberEquality because_Cache dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination voidElimination

Latex:
\mforall{}[b:\mBbbB{}].  \mforall{}[x,y,f,g:Top].
    (case  if  b  then  x  else  y  fi    of  inl(a)  =>  f[a]  |  inr(a)  =>  g[a]  \msim{}  if  b
    then  case  x  of  inl(a)  =>  f[a]  |  inr(a)  =>  g[a]
    else  case  y  of  inl(a)  =>  f[a]  |  inr(a)  =>  g[a]
    fi  )



Date html generated: 2018_05_21-PM-08_00_23
Last ObjectModification: 2017_07_26-PM-05_37_15

Theory : general


Home Index