Nuprl Lemma : div_induction-ext

b:{b:ℤ1 < b} . ∀[P:ℤ ⟶ ℙ]. (P[0]  (∀i:ℤ-o(P[i ÷ b]  P[i]))  (∀i:ℤP[i]))


Proof




Definitions occuring in Statement :  int_nzero: -o less_than: a < b uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] divide: n ÷ m natural_number: $n int:
Definitions unfolded in proof :  member: t ∈ T div_induction uniform-comp-nat-induction decidable__equal_int decidable__int_equal uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff_weakening_equal genrec-ap: genrec-ap
Lemmas referenced :  div_induction lifting-strict-int_eq top_wf equal_wf has-value_wf_base base_wf is-exception_wf lifting-strict-spread uniform-comp-nat-induction decidable__equal_int decidable__int_equal iff_weakening_equal
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueDecide hypothesisEquality equalityTransitivity equalitySymmetry unionEquality unionElimination sqleReflexivity dependent_functionElimination independent_functionElimination baseApply closedConclusion decideExceptionCases inrFormation because_Cache imageMemberEquality imageElimination exceptionSqequal inlFormation callbyvalueApply applyExceptionCases

Latex:
\mforall{}b:\{b:\mBbbZ{}|  1  <  b\}  .  \mforall{}[P:\mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].  (P[0]  {}\mRightarrow{}  (\mforall{}i:\mBbbZ{}\msupminus{}\msupzero{}.  (P[i  \mdiv{}  b]  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  (\mforall{}i:\mBbbZ{}.  P[i]))



Date html generated: 2018_05_21-PM-07_49_13
Last ObjectModification: 2017_07_26-PM-05_27_01

Theory : general


Home Index