Nuprl Lemma : div_induction
∀b:{b:ℤ| 1 < b} . ∀[P:ℤ ⟶ ℙ]. (P[0] 
⇒ (∀i:ℤ-o. (P[i ÷ b] 
⇒ P[i])) 
⇒ (∀i:ℤ. P[i]))
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
divide: n ÷ m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
ge: i ≥ j 
, 
int_seg: {i..j-}
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
, 
lelt: i ≤ j < k
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
int_upper: {i...}
, 
less_than: a < b
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
Lemmas referenced : 
all_wf, 
int_nzero_wf, 
int_nzero_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
equal-wf-T-base, 
set_wf, 
less_than_wf, 
uniform-comp-nat-induction, 
absval_wf, 
nat_wf, 
decidable__equal_int, 
subtype_base_sq, 
nat_properties, 
set_subtype_base, 
equal_wf, 
set-value-type, 
int-value-type, 
uall_wf, 
int_seg_wf, 
absval_ifthenelse, 
lt_int_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
intformnot_wf, 
itermMinus_wf, 
int_formula_prop_not_lemma, 
int_term_value_minus_lemma, 
bool_cases, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
nequal_wf, 
subtract_wf, 
sq_stable__less_than, 
decidable__le, 
intformle_wf, 
itermSubtract_wf, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
decidable__lt, 
lelt_wf, 
iff_weakening_equal, 
absval_div_decreases, 
subtype_rel_sets, 
le_wf, 
add_nat_wf, 
false_wf, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
intEquality, 
divideEquality, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
baseClosed, 
independent_functionElimination, 
universeEquality, 
cumulativity, 
setEquality, 
unionElimination, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
cutEval, 
dependent_set_memberEquality, 
productElimination, 
impliesFunctionality, 
imageMemberEquality, 
imageElimination, 
applyLambdaEquality, 
addEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion
Latex:
\mforall{}b:\{b:\mBbbZ{}|  1  <  b\}  .  \mforall{}[P:\mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].  (P[0]  {}\mRightarrow{}  (\mforall{}i:\mBbbZ{}\msupminus{}\msupzero{}.  (P[i  \mdiv{}  b]  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  (\mforall{}i:\mBbbZ{}.  P[i]))
Date html generated:
2018_05_21-PM-07_49_04
Last ObjectModification:
2017_07_26-PM-05_26_51
Theory : general
Home
Index