Nuprl Lemma : do-apply-compose

[A,B,C:Type]. ∀[g:A ⟶ (B Top)]. ∀[f:B ⟶ (C Top)]. ∀[x:A].
  do-apply(f g;x) do-apply(f;do-apply(g;x)) supposing ↑can-apply(f g;x)


Proof




Definitions occuring in Statement :  p-compose: g do-apply: do-apply(f;x) can-apply: can-apply(f;x) assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top function: x:A ⟶ B[x] union: left right universe: Type sqequal: t
Definitions unfolded in proof :  do-apply: do-apply(f;x) p-compose: g can-apply: can-apply(f;x) member: t ∈ T all: x:A. B[x] implies:  Q isl: isl(x) outl: outl(x) ifthenelse: if then else fi  btrue: tt prop: uall: [x:A]. B[x] bfalse: ff assert: b false: False subtype_rel: A ⊆B uimplies: supposing a top: Top
Lemmas referenced :  top_wf assert_wf isl_wf false_wf equal_wf can-apply_wf p-compose_wf subtype_rel_union
Rules used in proof :  cut thin sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule applyEquality functionExtensionality hypothesisEquality cumulativity unionEquality introduction extract_by_obid hypothesis lambdaFormation unionElimination sqequalHypSubstitution isectElimination voidElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination because_Cache independent_isectElimination lambdaEquality isect_memberEquality voidEquality functionEquality universeEquality isect_memberFormation sqequalAxiom

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[g:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[f:B  {}\mrightarrow{}  (C  +  Top)].  \mforall{}[x:A].
    do-apply(f  o  g;x)  \msim{}  do-apply(f;do-apply(g;x))  supposing  \muparrow{}can-apply(f  o  g;x)



Date html generated: 2017_10_01-AM-09_13_43
Last ObjectModification: 2017_07_26-PM-04_49_03

Theory : general


Home Index