Nuprl Lemma : fseg_append
∀[T:Type]. ∀l1,l2,l3:T List.  (fseg(T;l1;l2) ⇒ fseg(T;l1;l3 @ l2))
Proof
Definitions occuring in Statement : 
fseg: fseg(T;L1;L2), 
append: as @ bs, 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
fseg: fseg(T;L1;L2), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
top: Top, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
append_wf, 
length_wf_nat, 
equal_wf, 
nat_wf, 
append_assoc, 
list_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
rename, 
lambdaEquality, 
because_Cache, 
universeIsType, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}l1,l2,l3:T  List.    (fseg(T;l1;l2)  {}\mRightarrow{}  fseg(T;l1;l3  @  l2))
Date html generated:
2019_10_15-AM-11_07_50
Last ObjectModification:
2018_09_26-PM-11_31_36
Theory : general
Home
Index