Nuprl Lemma : fseg_append

[T:Type]. ∀l1,l2,l3:T List.  (fseg(T;l1;l2)  fseg(T;l1;l3 l2))


Proof




Definitions occuring in Statement :  fseg: fseg(T;L1;L2) append: as bs list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  fseg: fseg(T;L1;L2) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: top: Top so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  append_wf length_wf_nat equal_wf nat_wf append_assoc list_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis dependent_set_memberEquality isect_memberEquality voidElimination voidEquality hyp_replacement equalitySymmetry applyLambdaEquality setElimination rename lambdaEquality because_Cache universeIsType universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}l1,l2,l3:T  List.    (fseg(T;l1;l2)  {}\mRightarrow{}  fseg(T;l1;l3  @  l2))



Date html generated: 2019_10_15-AM-11_07_50
Last ObjectModification: 2018_09_26-PM-11_31_36

Theory : general


Home Index