Nuprl Lemma : fseg_cons2

[T:Type]. ∀x:T. ∀[L1,L2:T List].  (fseg(T;L1;L2)  fseg(T;L1;[x L2]))


Proof




Definitions occuring in Statement :  fseg: fseg(T;L1;L2) cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  fseg: fseg(T;L1;L2) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  cons_wf list_ind_cons_lemma equal_wf squash_wf true_wf iff_weakening_equal list_wf append_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality hypothesis dependent_functionElimination isect_memberEquality voidElimination voidEquality applyEquality lambdaEquality imageElimination because_Cache equalityTransitivity equalitySymmetry equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}[L1,L2:T  List].    (fseg(T;L1;L2)  {}\mRightarrow{}  fseg(T;L1;[x  /  L2]))



Date html generated: 2018_05_21-PM-06_30_11
Last ObjectModification: 2017_07_26-PM-04_50_34

Theory : general


Home Index