Nuprl Lemma : fseg_cons2
∀[T:Type]. ∀x:T. ∀[L1,L2:T List].  (fseg(T;L1;L2) 
⇒ fseg(T;L1;[x / L2]))
Proof
Definitions occuring in Statement : 
fseg: fseg(T;L1;L2)
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
fseg: fseg(T;L1;L2)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
cons_wf, 
list_ind_cons_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
list_wf, 
append_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}[L1,L2:T  List].    (fseg(T;L1;L2)  {}\mRightarrow{}  fseg(T;L1;[x  /  L2]))
Date html generated:
2018_05_21-PM-06_30_11
Last ObjectModification:
2017_07_26-PM-04_50_34
Theory : general
Home
Index