Nuprl Lemma : inr_eq_inl
∀[A,B:Type]. ∀[x:A]. ∀[y:B].  uiff((inr y ) = (inl x) ∈ (A + B);False)
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
false: False
, 
inr: inr x 
, 
inl: inl x
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
false: False
, 
isl: isl(x)
, 
prop: ℙ
, 
not: ¬A
, 
implies: P 
⇒ Q
Lemmas referenced : 
btrue_wf, 
and_wf, 
equal_wf, 
isl_wf, 
bfalse_wf, 
btrue_neq_bfalse, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
lemma_by_obid, 
hypothesis, 
equalitySymmetry, 
dependent_set_memberEquality, 
equalityTransitivity, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
productElimination, 
setEquality, 
independent_functionElimination, 
voidElimination, 
because_Cache, 
inrEquality, 
inlEquality, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[x:A].  \mforall{}[y:B].    uiff((inr  y  )  =  (inl  x);False)
Date html generated:
2016_05_15-PM-03_58_40
Last ObjectModification:
2015_12_27-PM-03_06_35
Theory : general
Home
Index