Nuprl Lemma : inr_eq_inl

[A,B:Type]. ∀[x:A]. ∀[y:B].  uiff((inr (inl x) ∈ (A B);False)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] false: False inr: inr  inl: inl x union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a false: False isl: isl(x) prop: not: ¬A implies:  Q
Lemmas referenced :  btrue_wf and_wf equal_wf isl_wf bfalse_wf btrue_neq_bfalse false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule lemma_by_obid hypothesis equalitySymmetry dependent_set_memberEquality equalityTransitivity sqequalHypSubstitution isectElimination thin unionEquality hypothesisEquality applyEquality lambdaEquality setElimination rename productElimination setEquality independent_functionElimination voidElimination because_Cache inrEquality inlEquality independent_pairEquality isect_memberEquality axiomEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[x:A].  \mforall{}[y:B].    uiff((inr  y  )  =  (inl  x);False)



Date html generated: 2016_05_15-PM-03_58_40
Last ObjectModification: 2015_12_27-PM-03_06_35

Theory : general


Home Index