Nuprl Lemma : l-ordered-from-upto-lt-true
∀[n,m:ℤ].  (l-ordered(ℤ;x,y.x < y;[n, m)) 
⇐⇒ True)
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
from-upto: [n, m)
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
true: True
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
rev_implies: P 
⇐ Q
, 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
l-ordered_wf, 
from-upto_wf, 
subtype_rel_list, 
and_wf, 
le_wf, 
less_than_wf, 
l-ordered-from-upto-lt, 
true_wf, 
member-less_than, 
l_before_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
natural_numberEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
setEquality, 
independent_isectElimination, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[n,m:\mBbbZ{}].    (l-ordered(\mBbbZ{};x,y.x  <  y;[n,  m))  \mLeftarrow{}{}\mRightarrow{}  True)
Date html generated:
2016_05_15-PM-04_37_12
Last ObjectModification:
2015_12_27-PM-02_44_17
Theory : general
Home
Index