Nuprl Lemma : l-ordered-from-upto-lt-true

[n,m:ℤ].  (l-ordered(ℤ;x,y.x < y;[n, m)) ⇐⇒ True)


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) from-upto: [n, m) less_than: a < b uall: [x:A]. B[x] iff: ⇐⇒ Q true: True int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q true: True prop: subtype_rel: A ⊆B uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_implies:  Q l-ordered: l-ordered(T;x,y.R[x; y];L) all: x:A. B[x]
Lemmas referenced :  l-ordered_wf from-upto_wf subtype_rel_list and_wf le_wf less_than_wf l-ordered-from-upto-lt true_wf member-less_than l_before_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation natural_numberEquality lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality hypothesis applyEquality setEquality independent_isectElimination lambdaEquality setElimination rename because_Cache sqequalRule productElimination independent_pairEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[n,m:\mBbbZ{}].    (l-ordered(\mBbbZ{};x,y.x  <  y;[n,  m))  \mLeftarrow{}{}\mRightarrow{}  True)



Date html generated: 2016_05_15-PM-04_37_12
Last ObjectModification: 2015_12_27-PM-02_44_17

Theory : general


Home Index