Nuprl Lemma : n-intersecting_wf

[A,T:Type].  ∀[n:ℤ]. (n-intersecting(A;T;n) ∈ ℙsupposing T ⊆(A List)


Proof




Definitions occuring in Statement :  n-intersecting: n-intersecting(A;T;n) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a n-intersecting: n-intersecting(A;T;n) so_lambda: λ2x.t[x] implies:  Q prop: subtype_rel: A ⊆B all: x:A. B[x] so_apply: x[s] exists: x:A. B[x]
Lemmas referenced :  all_wf list_wf equal-wf-T-base length_wf int_subtype_base exists_wf l_all_wf2 l_member_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality functionEquality intEquality applyEquality because_Cache lambdaFormation setElimination rename setEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[A,T:Type].    \mforall{}[n:\mBbbZ{}].  (n-intersecting(A;T;n)  \mmember{}  \mBbbP{})  supposing  T  \msubseteq{}r  (A  List)



Date html generated: 2016_05_15-PM-06_24_11
Last ObjectModification: 2015_12_27-PM-00_03_38

Theory : general


Home Index