Nuprl Lemma : n-intersecting_wf
∀[A,T:Type].  ∀[n:ℤ]. (n-intersecting(A;T;n) ∈ ℙ) supposing T ⊆r (A List)
Proof
Definitions occuring in Statement : 
n-intersecting: n-intersecting(A;T;n)
, 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
n-intersecting: n-intersecting(A;T;n)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
all_wf, 
list_wf, 
equal-wf-T-base, 
length_wf, 
int_subtype_base, 
exists_wf, 
l_all_wf2, 
l_member_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
intEquality, 
applyEquality, 
because_Cache, 
lambdaFormation, 
setElimination, 
rename, 
setEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[A,T:Type].    \mforall{}[n:\mBbbZ{}].  (n-intersecting(A;T;n)  \mmember{}  \mBbbP{})  supposing  T  \msubseteq{}r  (A  List)
Date html generated:
2016_05_15-PM-06_24_11
Last ObjectModification:
2015_12_27-PM-00_03_38
Theory : general
Home
Index