Nuprl Lemma : p-disjoint_wf

[A,B:Type]. ∀[f,g:A ⟶ (B Top)].  (p-disjoint(A;f;g) ∈ ℙ)


Proof




Definitions occuring in Statement :  p-disjoint: p-disjoint(A;f;g) uall: [x:A]. B[x] top: Top prop: member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  p-disjoint: p-disjoint(A;f;g) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a all: x:A. B[x] top: Top
Lemmas referenced :  all_wf not_wf assert_wf can-apply_wf subtype_rel_dep_function top_wf subtype_rel_union
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality productEquality because_Cache applyEquality unionEquality hypothesis independent_isectElimination lambdaFormation isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f,g:A  {}\mrightarrow{}  (B  +  Top)].    (p-disjoint(A;f;g)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-03_46_06
Last ObjectModification: 2015_12_27-PM-01_20_29

Theory : general


Home Index