Nuprl Lemma : p-first_wf

[A,B:Type]. ∀[L:(A ⟶ (B Top)) List].  (p-first(L) ∈ A ⟶ (B Top))


Proof




Definitions occuring in Statement :  p-first: p-first(L) list: List uall: [x:A]. B[x] top: Top member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  p-first: p-first(L) uall: [x:A]. B[x] member: t ∈ T top: Top so_lambda: λ2y.t[x; y] all: x:A. B[x] implies:  Q prop: so_apply: x[s1;s2]
Lemmas referenced :  list_accum_wf top_wf equal_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality unionEquality hypothesis inrEquality isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry lambdaFormation unionElimination inlEquality applyEquality dependent_functionElimination independent_functionElimination axiomEquality because_Cache universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[L:(A  {}\mrightarrow{}  (B  +  Top))  List].    (p-first(L)  \mmember{}  A  {}\mrightarrow{}  (B  +  Top))



Date html generated: 2019_10_15-AM-11_07_25
Last ObjectModification: 2018_08_21-PM-01_58_59

Theory : general


Home Index