Nuprl Lemma : p-first_wf
∀[A,B:Type]. ∀[L:(A ⟶ (B + Top)) List].  (p-first(L) ∈ A ⟶ (B + Top))
Proof
Definitions occuring in Statement : 
p-first: p-first(L)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
p-first: p-first(L)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s1;s2]
Lemmas referenced : 
list_accum_wf, 
top_wf, 
equal_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesisEquality, 
unionEquality, 
hypothesis, 
inrEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
unionElimination, 
inlEquality, 
applyEquality, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[L:(A  {}\mrightarrow{}  (B  +  Top))  List].    (p-first(L)  \mmember{}  A  {}\mrightarrow{}  (B  +  Top))
Date html generated:
2019_10_15-AM-11_07_25
Last ObjectModification:
2018_08_21-PM-01_58_59
Theory : general
Home
Index