Nuprl Lemma : spread-ifthenelse
∀[b:𝔹]. ∀[f1,f2,x,y:Top].
  (let u,v = x 
   in if b then f1[u;v] else f2[u;v] fi  ~ if b then let u,v = x in f1[u;v] else let u,v = x in f2[u;v] fi )
Proof
Definitions occuring in Statement : 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
spread: spread def, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
top_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
thin, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
isectElimination, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
sqequalAxiom, 
isect_memberEquality, 
because_Cache, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}[b:\mBbbB{}].  \mforall{}[f1,f2,x,y:Top].
    (let  u,v  =  x 
      in  if  b  then  f1[u;v]  else  f2[u;v]  fi    \msim{}  if  b
    then  let  u,v  =  x 
              in  f1[u;v]
    else  let  u,v  =  x 
              in  f2[u;v]
    fi  )
Date html generated:
2017_10_01-AM-09_11_33
Last ObjectModification:
2017_07_26-PM-04_47_32
Theory : general
Home
Index