Nuprl Lemma : sub-mset_transitivity
∀[T:Type]. ∀A,B,C:T List.  (sub-mset(T; A; B) 
⇒ sub-mset(T; B; C) 
⇒ sub-mset(T; A; C))
Proof
Definitions occuring in Statement : 
sub-mset: sub-mset(T; L1; L2)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sub-mset: sub-mset(T; L1; L2)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
top: Top
, 
uimplies: b supposing a
Lemmas referenced : 
append_wf, 
permutation_wf, 
sub-mset_wf, 
list_wf, 
permutation_transitivity, 
append_assoc_sq, 
append_functionality_wrt_permutation, 
permutation-rotate, 
permutation_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}A,B,C:T  List.    (sub-mset(T;  A;  B)  {}\mRightarrow{}  sub-mset(T;  B;  C)  {}\mRightarrow{}  sub-mset(T;  A;  C))
Date html generated:
2016_05_15-PM-04_32_11
Last ObjectModification:
2015_12_27-PM-02_50_02
Theory : general
Home
Index