Nuprl Lemma : sub-mset_weakening
∀[T:Type]. ∀L1,L2:T List.  (permutation(T;L1;L2) 
⇒ sub-mset(T; L1; L2))
Proof
Definitions occuring in Statement : 
sub-mset: sub-mset(T; L1; L2)
, 
permutation: permutation(T;L1;L2)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sub-mset: sub-mset(T; L1; L2)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
nil_wf, 
nil-append, 
permutation_wf, 
append_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
dependent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (permutation(T;L1;L2)  {}\mRightarrow{}  sub-mset(T;  L1;  L2))
Date html generated:
2016_05_15-PM-04_32_02
Last ObjectModification:
2015_12_27-PM-02_48_48
Theory : general
Home
Index