Nuprl Lemma : test-add-member-elim
∀x,y:Base. ∀d:ℤ.  ((x + y ~ d) 
⇒ (0 < x ∨ (x ≤ 0)))
Proof
Definitions occuring in Statement : 
less_than: a < b
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
has-value: (a)↓
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_or_lemma, 
int_formula_prop_not_lemma, 
intformle_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformor_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
decidable__lt, 
le_wf, 
less_than_wf, 
decidable__or, 
int-value-type, 
value-type-has-value, 
base_wf, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalIntensionalEquality, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
thin, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
intEquality, 
isectElimination, 
independent_isectElimination, 
callbyvalueAdd, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}x,y:Base.  \mforall{}d:\mBbbZ{}.    ((x  +  y  \msim{}  d)  {}\mRightarrow{}  (0  <  x  \mvee{}  (x  \mleq{}  0)))
Date html generated:
2016_05_15-PM-07_49_52
Last ObjectModification:
2016_01_16-AM-09_33_05
Theory : general
Home
Index