Nuprl Lemma : test-add-member-elim

x,y:Base. ∀d:ℤ.  ((x d)  (0 < x ∨ (x ≤ 0)))


Proof




Definitions occuring in Statement :  less_than: a < b le: A ≤ B all: x:A. B[x] implies:  Q or: P ∨ Q add: m natural_number: $n int: base: Base sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] uimplies: supposing a has-value: (a)↓ and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop:
Lemmas referenced :  int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_or_lemma int_formula_prop_not_lemma intformle_wf itermVar_wf itermConstant_wf intformless_wf intformor_wf intformnot_wf satisfiable-full-omega-tt decidable__le decidable__lt le_wf less_than_wf decidable__or int-value-type value-type-has-value base_wf int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalIntensionalEquality sqequalRule baseApply closedConclusion baseClosed hypothesisEquality applyEquality thin lemma_by_obid hypothesis sqequalHypSubstitution intEquality isectElimination independent_isectElimination callbyvalueAdd productElimination equalityTransitivity equalitySymmetry natural_numberEquality independent_functionElimination dependent_functionElimination because_Cache unionElimination dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}x,y:Base.  \mforall{}d:\mBbbZ{}.    ((x  +  y  \msim{}  d)  {}\mRightarrow{}  (0  <  x  \mvee{}  (x  \mleq{}  0)))



Date html generated: 2016_05_15-PM-07_49_52
Last ObjectModification: 2016_01_16-AM-09_33_05

Theory : general


Home Index