Nuprl Lemma : test1
∀p:ℕ × ℕ. ∀bs:ℕ List.  (let x,y = p in x + y ∈ ℤ)
Proof
Definitions occuring in Statement : 
list: T List
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
spread: spread def, 
product: x:A × B[x]
, 
add: n + m
, 
int: ℤ
Definitions unfolded in proof : 
member: t ∈ T
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
spread_wf, 
list_wf, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
hypothesis, 
dependent_set_memberEquality, 
addEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
isectElimination, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
because_Cache, 
productEquality, 
lambdaFormation, 
applyEquality
Latex:
\mforall{}p:\mBbbN{}  \mtimes{}  \mBbbN{}.  \mforall{}bs:\mBbbN{}  List.    (let  x,y  =  p  in  x  +  y  \mmember{}  \mBbbZ{})
Date html generated:
2016_05_15-PM-07_46_04
Last ObjectModification:
2016_01_16-AM-09_34_02
Theory : general
Home
Index