Nuprl Lemma : ts-reachable-induction2

ts:transition-system{i:l}
  ∀[P:ts-reachable(ts) ⟶ ℙ]
    (P[ts-init(ts)]
     (∀x,y:ts-reachable(ts).  (P[x]  (x ts-rel(ts) y)  P[y]))
     {∀x:ts-type(ts). ((ts-init(ts) (ts-rel(ts)^*) x)  P[x])})


Proof




Definitions occuring in Statement :  ts-reachable: ts-reachable(ts) ts-rel: ts-rel(ts) ts-init: ts-init(ts) ts-type: ts-type(ts) transition-system: transition-system{i:l} rel_star: R^* uall: [x:A]. B[x] prop: guard: {T} infix_ap: y so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q prop: infix_ap: y ts-reachable: ts-reachable(ts) so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] uimplies: supposing a guard: {T}
Lemmas referenced :  ts-reachable-induction3 ts-rel_wf rel_star_wf ts-type_wf ts-init_wf ts-reachable_wf subtype_rel_wf all_wf infix_ap_wf subtype_rel_set subtype_rel_dep_function ts-init_wf_reachable transition-system_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isect_memberFormation isectElimination independent_functionElimination applyEquality setElimination rename dependent_set_memberEquality because_Cache sqequalRule lambdaEquality setEquality universeEquality cumulativity functionEquality instantiate independent_isectElimination

Latex:
\mforall{}ts:transition-system\{i:l\}
    \mforall{}[P:ts-reachable(ts)  {}\mrightarrow{}  \mBbbP{}]
        (P[ts-init(ts)]
        {}\mRightarrow{}  (\mforall{}x,y:ts-reachable(ts).    (P[x]  {}\mRightarrow{}  (x  ts-rel(ts)  y)  {}\mRightarrow{}  P[y]))
        {}\mRightarrow{}  \{\mforall{}x:ts-type(ts).  ((ts-init(ts)  rel\_star(ts-type(ts);  ts-rel(ts))  x)  {}\mRightarrow{}  P[x])\})



Date html generated: 2016_05_15-PM-05_42_04
Last ObjectModification: 2015_12_27-PM-00_31_39

Theory : general


Home Index