Nuprl Lemma : p-or_wf
∀[A,B:PType].  (p-or(A;B) ∈ PType)
Proof
Definitions occuring in Statement : 
p-or: p-or(A;B)
, 
p-type: PType
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
p-type: PType
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
iff: P 
⇐⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
p-or: p-or(A;B)
, 
guard: {T}
, 
or: P ∨ Q
Lemmas referenced : 
p-type_wf, 
quotient-member-eq, 
iff_wf, 
equiv_rel_iff, 
or_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productElimination, 
thin, 
instantiate, 
isectElimination, 
universeEquality, 
lambdaEquality_alt, 
hypothesisEquality, 
applyEquality, 
cumulativity, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination, 
independent_pairFormation, 
lambdaFormation_alt, 
unionElimination, 
inlFormation_alt, 
universeIsType, 
inrFormation_alt, 
unionIsType, 
productIsType, 
equalityIsType4, 
functionIsType, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[A,B:PType].    (p-or(A;B)  \mmember{}  PType)
Date html generated:
2020_05_20-AM-08_24_41
Last ObjectModification:
2018_10_15-PM-01_30_03
Theory : lattices
Home
Index