Nuprl Lemma : agree_on_common_symmetry
∀[T:Type]. ∀as,bs:T List. (agree_on_common(T;as;bs)
⇒ agree_on_common(T;bs;as))
Proof
Definitions occuring in Statement :
agree_on_common: agree_on_common(T;as;bs)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
universe: Type
Definitions unfolded in proof :
true: True
,
so_apply: x[s1;s2;s3]
,
top: Top
,
so_lambda: so_lambda3,
agree_on_common: agree_on_common(T;as;bs)
,
so_apply: x[s]
,
prop: ℙ
,
implies: P
⇒ Q
,
so_lambda: λ2x.t[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
or: P ∨ Q
,
and: P ∧ Q
,
cand: A c∧ B
,
not: ¬A
,
false: False
Lemmas referenced :
cons_wf,
istype-universe,
list_ind_cons_lemma,
istype-void,
list_ind_nil_lemma,
nil_wf,
agree_on_common_wf,
list_wf,
all_wf,
list_induction,
l_member_wf
Rules used in proof :
universeEquality,
functionIsType,
rename,
natural_numberEquality,
voidElimination,
isect_memberEquality_alt,
dependent_functionElimination,
independent_functionElimination,
universeIsType,
inhabitedIsType,
because_Cache,
functionEquality,
hypothesis,
lambdaEquality_alt,
sqequalRule,
hypothesisEquality,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
thin,
cut,
lambdaFormation_alt,
isect_memberFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution,
unionElimination,
productElimination,
inrFormation_alt,
inlFormation_alt,
independent_pairFormation,
productIsType,
equalityIstype,
unionIsType,
equalitySymmetry
Latex:
\mforall{}[T:Type]. \mforall{}as,bs:T List. (agree\_on\_common(T;as;bs) {}\mRightarrow{} agree\_on\_common(T;bs;as))
Date html generated:
2020_05_20-AM-07_48_10
Last ObjectModification:
2020_01_24-PM-02_32_15
Theory : list!
Home
Index