Nuprl Lemma : agree_on_common_symmetry
∀[T:Type]. ∀as,bs:T List.  (agree_on_common(T;as;bs) 
⇒ agree_on_common(T;bs;as))
Proof
Definitions occuring in Statement : 
agree_on_common: agree_on_common(T;as;bs)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
true: True
, 
so_apply: x[s1;s2;s3]
, 
top: Top
, 
so_lambda: so_lambda3, 
agree_on_common: agree_on_common(T;as;bs)
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
not: ¬A
, 
false: False
Lemmas referenced : 
cons_wf, 
istype-universe, 
list_ind_cons_lemma, 
istype-void, 
list_ind_nil_lemma, 
nil_wf, 
agree_on_common_wf, 
list_wf, 
all_wf, 
list_induction, 
l_member_wf
Rules used in proof : 
universeEquality, 
functionIsType, 
rename, 
natural_numberEquality, 
voidElimination, 
isect_memberEquality_alt, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType, 
inhabitedIsType, 
because_Cache, 
functionEquality, 
hypothesis, 
lambdaEquality_alt, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
thin, 
cut, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
unionElimination, 
productElimination, 
inrFormation_alt, 
inlFormation_alt, 
independent_pairFormation, 
productIsType, 
equalityIstype, 
unionIsType, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  \mforall{}as,bs:T  List.    (agree\_on\_common(T;as;bs)  {}\mRightarrow{}  agree\_on\_common(T;bs;as))
Date html generated:
2020_05_20-AM-07_48_10
Last ObjectModification:
2020_01_24-PM-02_32_15
Theory : list!
Home
Index