Nuprl Lemma : filter_strong_safety
∀[T:Type]. ∀[P:(T List) ⟶ ℙ]. ∀f:T ⟶ 𝔹. (strong_safety(T;L.P L)
⇒ strong_safety(T;L.P filter(f;L)))
Proof
Definitions occuring in Statement :
strong_safety: strong_safety(T;tr.P[tr])
,
filter: filter(P;l)
,
list: T List
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
strong_safety: strong_safety(T;tr.P[tr])
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
guard: {T}
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
prop: ℙ
,
uimplies: b supposing a
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
cand: A c∧ B
Lemmas referenced :
filter_wf5,
subtype_rel_dep_function,
bool_wf,
l_member_wf,
subtype_rel_self,
set_wf,
sublist_wf,
list_wf,
all_wf,
sublist_filter,
l_all_filter,
sublist_transitivity,
filter_is_sublist
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
lambdaFormation,
cut,
hypothesis,
thin,
sqequalHypSubstitution,
dependent_functionElimination,
introduction,
extract_by_obid,
isectElimination,
hypothesisEquality,
applyEquality,
lambdaEquality,
setEquality,
independent_isectElimination,
setElimination,
rename,
because_Cache,
independent_functionElimination,
functionEquality,
cumulativity,
universeEquality,
productElimination,
independent_pairFormation
Latex:
\mforall{}[T:Type]. \mforall{}[P:(T List) {}\mrightarrow{} \mBbbP{}].
\mforall{}f:T {}\mrightarrow{} \mBbbB{}. (strong\_safety(T;L.P L) {}\mRightarrow{} strong\_safety(T;L.P filter(f;L)))
Date html generated:
2019_10_15-AM-10_58_32
Last ObjectModification:
2018_09_17-PM-06_31_30
Theory : list!
Home
Index