Nuprl Lemma : interleaving_of_nil
∀[T:Type]. ∀L1,L2:T List.  (interleaving(T;L1;L2;[]) 
⇐⇒ (L1 = [] ∈ (T List)) ∧ (L2 = [] ∈ (T List)))
Proof
Definitions occuring in Statement : 
interleaving: interleaving(T;L1;L2;L)
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
nat: ℕ
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
le: A ≤ B
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
length_zero, 
length_interleaving, 
nil_wf, 
length_of_nil_lemma, 
non_neg_length, 
nat_properties, 
decidable__equal_int, 
length_wf, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
interleaving_wf, 
equal-wf-T-base, 
list_wf, 
nil_interleaving
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
because_Cache, 
hypothesis, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productEquality, 
baseClosed, 
universeIsType, 
universeEquality, 
hyp_replacement
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (interleaving(T;L1;L2;[])  \mLeftarrow{}{}\mRightarrow{}  (L1  =  [])  \mwedge{}  (L2  =  []))
Date html generated:
2019_10_15-AM-10_55_38
Last ObjectModification:
2018_09_27-AM-10_42_47
Theory : list!
Home
Index