Nuprl Lemma : interleaving_of_nil

[T:Type]. ∀L1,L2:T List.  (interleaving(T;L1;L2;[]) ⇐⇒ (L1 [] ∈ (T List)) ∧ (L2 [] ∈ (T List)))


Proof




Definitions occuring in Statement :  interleaving: interleaving(T;L1;L2;L) nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uiff: uiff(P;Q) uimplies: supposing a ge: i ≥  nat: guard: {T} decidable: Dec(P) or: P ∨ Q false: False le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: rev_implies:  Q
Lemmas referenced :  length_zero length_interleaving nil_wf length_of_nil_lemma non_neg_length nat_properties decidable__equal_int length_wf full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_term_value_add_lemma int_formula_prop_wf interleaving_wf equal-wf-T-base list_wf nil_interleaving
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_isectElimination because_Cache hypothesis sqequalRule equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename dependent_functionElimination unionElimination natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality productEquality baseClosed universeIsType universeEquality hyp_replacement

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (interleaving(T;L1;L2;[])  \mLeftarrow{}{}\mRightarrow{}  (L1  =  [])  \mwedge{}  (L2  =  []))



Date html generated: 2019_10_15-AM-10_55_38
Last ObjectModification: 2018_09_27-AM-10_42_47

Theory : list!


Home Index