Nuprl Lemma : nil_interleaving

[T:Type]. ∀L1,L:T List.  (interleaving(T;[];L1;L) ⇐⇒ L1 ∈ (T List))


Proof




Definitions occuring in Statement :  interleaving: interleaving(T;L1;L2;L) nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  subtype_rel: A ⊆B rev_implies:  Q top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a uiff: uiff(P;Q) or: P ∨ Q decidable: Dec(P) ge: i ≥  guard: {T} not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B nat: prop: member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] uall: [x:A]. B[x] interleaving: interleaving(T;L1;L2;L) disjoint_sublists: disjoint_sublists(T;L1;L2;L) select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] int_seg: {i..j-} lelt: i ≤ j < k cand: c∧ B less_than: a < b squash: T
Lemmas referenced :  decidable__equal_int list_wf and_wf non_neg_length nil_wf disjoint_sublists_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt add-is-int-iff decidable__le nat_properties le_wf false_wf add_nat_wf length_wf length_wf_nat nat_wf equal_wf length_of_nil_lemma disjoint_sublists_sublist proper_sublist_length stuck-spread istype-base int_seg_properties full-omega-unsat istype-int decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than int_seg_wf id_increasing istype-void select_wf increasing_wf
Rules used in proof :  universeEquality hyp_replacement applyEquality because_Cache independent_functionElimination computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination closedConclusion baseApply baseClosed promote_hyp pointwiseFunctionality unionElimination dependent_functionElimination rename setElimination applyLambdaEquality equalitySymmetry equalityTransitivity natural_numberEquality addEquality dependent_set_memberEquality hypothesisEquality cumulativity isectElimination productEquality thin productElimination sqequalHypSubstitution independent_pairFormation lambdaFormation isect_memberFormation hypothesis extract_by_obid introduction cut computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution lambdaFormation_alt Error :memTop,  dependent_pairFormation_alt lambdaEquality_alt dependent_set_memberEquality_alt approximateComputation universeIsType productIsType imageElimination functionIsType functionExtensionality inhabitedIsType equalityIstype

Latex:
\mforall{}[T:Type].  \mforall{}L1,L:T  List.    (interleaving(T;[];L1;L)  \mLeftarrow{}{}\mRightarrow{}  L  =  L1)



Date html generated: 2020_05_20-AM-07_48_18
Last ObjectModification: 2020_01_07-PM-02_28_50

Theory : list!


Home Index