Nuprl Lemma : nil_interleaving
∀[T:Type]. ∀L1,L:T List.  (interleaving(T;[];L1;L) ⇐⇒ L = L1 ∈ (T List))
Proof
Definitions occuring in Statement : 
interleaving: interleaving(T;L1;L2;L), 
nil: [], 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
subtype_rel: A ⊆r B, 
rev_implies: P ⇐ Q, 
top: Top, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
or: P ∨ Q, 
decidable: Dec(P), 
ge: i ≥ j , 
guard: {T}, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
nat: ℕ, 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
interleaving: interleaving(T;L1;L2;L), 
disjoint_sublists: disjoint_sublists(T;L1;L2;L), 
select: L[n], 
nil: [], 
it: ⋅, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
cand: A c∧ B, 
less_than: a < b, 
squash: ↓T
Lemmas referenced : 
decidable__equal_int, 
list_wf, 
and_wf, 
non_neg_length, 
nil_wf, 
disjoint_sublists_wf, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
add-is-int-iff, 
decidable__le, 
nat_properties, 
le_wf, 
false_wf, 
add_nat_wf, 
length_wf, 
length_wf_nat, 
nat_wf, 
equal_wf, 
length_of_nil_lemma, 
disjoint_sublists_sublist, 
proper_sublist_length, 
stuck-spread, 
istype-base, 
int_seg_properties, 
full-omega-unsat, 
istype-int, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
int_seg_wf, 
id_increasing, 
istype-void, 
select_wf, 
increasing_wf
Rules used in proof : 
universeEquality, 
hyp_replacement, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_isectElimination, 
closedConclusion, 
baseApply, 
baseClosed, 
promote_hyp, 
pointwiseFunctionality, 
unionElimination, 
dependent_functionElimination, 
rename, 
setElimination, 
applyLambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
natural_numberEquality, 
addEquality, 
dependent_set_memberEquality, 
hypothesisEquality, 
cumulativity, 
isectElimination, 
productEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
independent_pairFormation, 
lambdaFormation, 
isect_memberFormation, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution, 
lambdaFormation_alt, 
Error :memTop, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
dependent_set_memberEquality_alt, 
approximateComputation, 
universeIsType, 
productIsType, 
imageElimination, 
functionIsType, 
functionExtensionality, 
inhabitedIsType, 
equalityIstype
Latex:
\mforall{}[T:Type].  \mforall{}L1,L:T  List.    (interleaving(T;[];L1;L)  \mLeftarrow{}{}\mRightarrow{}  L  =  L1)
Date html generated:
2020_05_20-AM-07_48_18
Last ObjectModification:
2020_01_07-PM-02_28_50
Theory : list!
Home
Index