Nuprl Lemma : proper_sublist_length

[T:Type]. ∀[L1,L2:T List].  (L1 L2 ∈ (T List)) supposing ((||L1|| ||L2|| ∈ ℤand L1 ⊆ L2)


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 length: ||as|| list: List uimplies: supposing a uall: [x:A]. B[x] int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q prop: nat: sublist: L1 ⊆ L2 exists: x:A. B[x] and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A guard: {T} squash: T cand: c∧ B ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_extensionality less_than_wf length_wf nat_wf equal_wf sublist_wf list_wf lelt_wf increasing_is_id length_wf_nat int_seg_subtype false_wf le_weakening int_seg_wf squash_wf true_wf select_wf le_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf intformeq_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis lambdaFormation setElimination rename Error :universeIsType,  intEquality sqequalRule isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache Error :inhabitedIsType,  universeEquality productElimination dependent_functionElimination dependent_set_memberEquality independent_pairFormation natural_numberEquality functionExtensionality applyEquality lambdaEquality imageElimination productEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality voidElimination voidEquality imageMemberEquality baseClosed instantiate

Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].    (L1  =  L2)  supposing  ((||L1||  =  ||L2||)  and  L1  \msubseteq{}  L2)



Date html generated: 2019_06_20-PM-01_22_24
Last ObjectModification: 2018_09_26-PM-05_20_51

Theory : list_1


Home Index