Nuprl Lemma : increasing_is_id

[k:ℕ]. ∀[f:ℕk ⟶ ℕk].  ∀[i:ℕk]. ((f i) i ∈ ℤsupposing increasing(f;k)


Proof




Definitions occuring in Statement :  increasing: increasing(f;k) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) not: ¬A subtype_rel: A ⊆B all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m top: Top true: True exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] increasing: increasing(f;k) sq_type: SQType(T)
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than int_seg_wf increasing_wf istype-false istype-le subtract-1-ge-0 le_weakening2 istype-nat subtract_wf decidable__le not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top istype-void istype-int minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__lt not-lt-2 add-mul-special zero-mul le-add-cancel-alt istype-sqequal set_subtype_base lelt_wf int_subtype_base int_seg_properties increasing_implies le-add-cancel2 false_wf decidable__int_equal subtype_base_sq minus-zero not-equal-2 equal_wf le_wf one-mul mul-distributes-right two-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination independent_functionElimination voidElimination Error :universeIsType,  sqequalRule Error :lambdaEquality_alt,  dependent_functionElimination Error :isect_memberEquality_alt,  axiomEquality Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  productElimination Error :dependent_set_memberEquality_alt,  independent_pairFormation because_Cache functionExtensionality applyEquality closedConclusion Error :functionIsType,  equalityTransitivity equalitySymmetry unionElimination addEquality minusEquality Error :productIsType,  Error :dependent_pairFormation_alt,  baseApply baseClosed intEquality Error :equalityIsType1,  promote_hyp voidEquality isect_memberEquality lambdaEquality dependent_set_memberEquality lambdaFormation cumulativity instantiate sqequalIntensionalEquality dependent_pairFormation multiplyEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[f:\mBbbN{}k  {}\mrightarrow{}  \mBbbN{}k].    \mforall{}[i:\mBbbN{}k].  ((f  i)  =  i)  supposing  increasing(f;k)



Date html generated: 2019_06_20-AM-11_33_32
Last ObjectModification: 2018_10_18-PM-04_02_07

Theory : int_1


Home Index