Nuprl Lemma : increasing_is_id
∀[k:ℕ]. ∀[f:ℕk ⟶ ℕk].  ∀[i:ℕk]. ((f i) = i ∈ ℤ) supposing increasing(f;k)
Proof
Definitions occuring in Statement : 
increasing: increasing(f;k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
top: Top
, 
true: True
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
increasing: increasing(f;k)
, 
sq_type: SQType(T)
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
istype-less_than, 
int_seg_wf, 
increasing_wf, 
istype-false, 
istype-le, 
subtract-1-ge-0, 
le_weakening2, 
istype-nat, 
subtract_wf, 
decidable__le, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
istype-void, 
istype-int, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__lt, 
not-lt-2, 
add-mul-special, 
zero-mul, 
le-add-cancel-alt, 
istype-sqequal, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
int_seg_properties, 
increasing_implies, 
le-add-cancel2, 
false_wf, 
decidable__int_equal, 
subtype_base_sq, 
minus-zero, 
not-equal-2, 
equal_wf, 
le_wf, 
one-mul, 
mul-distributes-right, 
two-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
Error :lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
Error :universeIsType, 
sqequalRule, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
axiomEquality, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :functionIsTypeImplies, 
productElimination, 
Error :dependent_set_memberEquality_alt, 
independent_pairFormation, 
because_Cache, 
functionExtensionality, 
applyEquality, 
closedConclusion, 
Error :functionIsType, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
addEquality, 
minusEquality, 
Error :productIsType, 
Error :dependent_pairFormation_alt, 
baseApply, 
baseClosed, 
intEquality, 
Error :equalityIsType1, 
promote_hyp, 
voidEquality, 
isect_memberEquality, 
lambdaEquality, 
dependent_set_memberEquality, 
lambdaFormation, 
cumulativity, 
instantiate, 
sqequalIntensionalEquality, 
dependent_pairFormation, 
multiplyEquality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[f:\mBbbN{}k  {}\mrightarrow{}  \mBbbN{}k].    \mforall{}[i:\mBbbN{}k].  ((f  i)  =  i)  supposing  increasing(f;k)
Date html generated:
2019_06_20-AM-11_33_32
Last ObjectModification:
2018_10_18-PM-04_02_07
Theory : int_1
Home
Index