Nuprl Lemma : increasing_implies

[k:ℕ]. ∀[f:ℕk ⟶ ℤ].  {∀[x,y:ℕk].  x < supposing x < y} supposing increasing(f;k)


Proof




Definitions occuring in Statement :  increasing: increasing(f;k) int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] guard: {T} apply: a function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a increasing: increasing(f;k) int_seg: {i..j-} nat: prop: all: x:A. B[x] implies:  Q false: False and: P ∧ Q ge: i ≥  le: A ≤ B cand: c∧ B less_than: a < b squash: T lelt: i ≤ j < k true: True less_than': less_than'(a;b) subtype_rel: A ⊆B uiff: uiff(P;Q) rev_implies:  Q not: ¬A iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) sq_type: SQType(T) top: Top subtract: m sq_stable: SqStable(P) rev_uimplies: rev_uimplies(P;Q) exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: +
Lemmas referenced :  istype-less_than member-less_than int_seg_wf increasing_wf istype-int istype-nat nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf subtract-1-ge-0 le-add-cancel-alt add_functionality_wrt_le less-iff-le not-lt-2 false_wf decidable__lt int_subtype_base subtype_base_sq zero-mul add-mul-special add-swap add-associates zero-add add-commutes minus-one-mul lelt_wf subtract_wf equal-wf-T-base less_than_wf int_seg_properties sq_stable__le add-member-int_seg2 decidable__le istype-false not-le-2 condition-implies-le minus-add minus-one-mul-top add-zero le-add-cancel2 istype-le decidable__int_equal not-equal-2 le_antisymmetry_iff minus-minus le-add-cancel less_than_functionality istype-sqequal le_weakening2 le_weakening set_subtype_base add-is-int-iff le_reflexive one-mul two-mul mul-distributes-right mul-associates omega-shadow mul-distributes mul-swap mul-commutes minus-zero le_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut sqequalHypSubstitution hypothesis extract_by_obid isectElimination thin setElimination rename hypothesisEquality isect_memberEquality_alt applyEquality independent_isectElimination isectIsTypeImplies inhabitedIsType because_Cache universeIsType natural_numberEquality functionIsType lambdaFormation_alt intWeakElimination independent_pairFormation productElimination imageElimination independent_functionElimination voidElimination lambdaEquality_alt dependent_functionElimination functionIsTypeImplies lambdaEquality unionElimination cumulativity instantiate promote_hyp equalityTransitivity minusEquality multiplyEquality addEquality voidEquality isect_memberEquality dependent_set_memberEquality baseClosed intEquality functionExtensionality applyLambdaEquality equalitySymmetry hyp_replacement lambdaFormation imageMemberEquality closedConclusion dependent_set_memberEquality_alt Error :memTop,  productIsType dependent_pairFormation_alt equalityIstype baseApply sqequalBase

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[f:\mBbbN{}k  {}\mrightarrow{}  \mBbbZ{}].    \{\mforall{}[x,y:\mBbbN{}k].    f  x  <  f  y  supposing  x  <  y\}  supposing  increasing(f;k)



Date html generated: 2020_05_19-PM-09_36_05
Last ObjectModification: 2020_01_04-PM-07_56_48

Theory : int_1


Home Index