Nuprl Lemma : increasing_implies
∀[k:ℕ]. ∀[f:ℕk ⟶ ℤ].  {∀[x,y:ℕk].  f x < f y supposing x < y} supposing increasing(f;k)
Proof
Definitions occuring in Statement : 
increasing: increasing(f;k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
increasing: increasing(f;k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
false: False
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
cand: A c∧ B
, 
less_than: a < b
, 
squash: ↓T
, 
lelt: i ≤ j < k
, 
true: True
, 
less_than': less_than'(a;b)
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
sq_type: SQType(T)
, 
top: Top
, 
subtract: n - m
, 
sq_stable: SqStable(P)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat_plus: ℕ+
Lemmas referenced : 
istype-less_than, 
member-less_than, 
int_seg_wf, 
increasing_wf, 
istype-int, 
istype-nat, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
subtract-1-ge-0, 
le-add-cancel-alt, 
add_functionality_wrt_le, 
less-iff-le, 
not-lt-2, 
false_wf, 
decidable__lt, 
int_subtype_base, 
subtype_base_sq, 
zero-mul, 
add-mul-special, 
add-swap, 
add-associates, 
zero-add, 
add-commutes, 
minus-one-mul, 
lelt_wf, 
subtract_wf, 
equal-wf-T-base, 
less_than_wf, 
int_seg_properties, 
sq_stable__le, 
add-member-int_seg2, 
decidable__le, 
istype-false, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul-top, 
add-zero, 
le-add-cancel2, 
istype-le, 
decidable__int_equal, 
not-equal-2, 
le_antisymmetry_iff, 
minus-minus, 
le-add-cancel, 
less_than_functionality, 
istype-sqequal, 
le_weakening2, 
le_weakening, 
set_subtype_base, 
add-is-int-iff, 
le_reflexive, 
one-mul, 
two-mul, 
mul-distributes-right, 
mul-associates, 
omega-shadow, 
mul-distributes, 
mul-swap, 
mul-commutes, 
minus-zero, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
isect_memberEquality_alt, 
applyEquality, 
independent_isectElimination, 
isectIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
universeIsType, 
natural_numberEquality, 
functionIsType, 
lambdaFormation_alt, 
intWeakElimination, 
independent_pairFormation, 
productElimination, 
imageElimination, 
independent_functionElimination, 
voidElimination, 
lambdaEquality_alt, 
dependent_functionElimination, 
functionIsTypeImplies, 
lambdaEquality, 
unionElimination, 
cumulativity, 
instantiate, 
promote_hyp, 
equalityTransitivity, 
minusEquality, 
multiplyEquality, 
addEquality, 
voidEquality, 
isect_memberEquality, 
dependent_set_memberEquality, 
baseClosed, 
intEquality, 
functionExtensionality, 
applyLambdaEquality, 
equalitySymmetry, 
hyp_replacement, 
lambdaFormation, 
imageMemberEquality, 
closedConclusion, 
dependent_set_memberEquality_alt, 
Error :memTop, 
productIsType, 
dependent_pairFormation_alt, 
equalityIstype, 
baseApply, 
sqequalBase
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[f:\mBbbN{}k  {}\mrightarrow{}  \mBbbZ{}].    \{\mforall{}[x,y:\mBbbN{}k].    f  x  <  f  y  supposing  x  <  y\}  supposing  increasing(f;k)
Date html generated:
2020_05_19-PM-09_36_05
Last ObjectModification:
2020_01_04-PM-07_56_48
Theory : int_1
Home
Index