Nuprl Lemma : disjoint_sublists_sublist

[T:Type]. ∀L1,L2,L:T List.  (disjoint_sublists(T;L1;L2;L)  {L1 ⊆ L ∧ L2 ⊆ L})


Proof




Definitions occuring in Statement :  disjoint_sublists: disjoint_sublists(T;L1;L2;L) sublist: L1 ⊆ L2 list: List uall: [x:A]. B[x] guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q disjoint_sublists: disjoint_sublists(T;L1;L2;L) sublist: L1 ⊆ L2 guard: {T} exists: x:A. B[x] and: P ∧ Q cand: c∧ B member: t ∈ T prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top less_than: a < b squash: T ge: i ≥  nat: so_apply: x[s]
Lemmas referenced :  increasing_wf length_wf_nat int_seg_wf length_wf all_wf equal_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma non_neg_length lelt_wf nat_properties disjoint_sublists_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut dependent_pairFormation hypothesisEquality independent_pairFormation hypothesis productEquality introduction extract_by_obid isectElimination cumulativity functionExtensionality applyEquality because_Cache sqequalRule natural_numberEquality lambdaEquality setElimination rename independent_isectElimination dependent_functionElimination unionElimination approximateComputation independent_functionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality imageElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry applyLambdaEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2,L:T  List.    (disjoint\_sublists(T;L1;L2;L)  {}\mRightarrow{}  \{L1  \msubseteq{}  L  \mwedge{}  L2  \msubseteq{}  L\})



Date html generated: 2018_05_21-PM-06_20_26
Last ObjectModification: 2018_05_19-PM-05_32_40

Theory : list!


Home Index