Nuprl Lemma : l_all2_cons
∀[T:Type]. ∀L:T List. ∀[P:T ⟶ T ⟶ ℙ]. ∀u:T. ((∀x<y∈[u / L].P[x;y]) 
⇐⇒ (∀y∈L.P[u;y]) ∧ (∀x<y∈L.P[x;y]))
Proof
Definitions occuring in Statement : 
l_all2: (∀x<y∈L.P[x; y])
, 
l_all: (∀x∈L.P[x])
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
l_all2: (∀x<y∈L.P[x; y])
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
l_before_wf, 
l_member_wf, 
equal_wf, 
all_wf, 
or_wf, 
cons_before, 
l_all_iff, 
cons_wf, 
l_all_wf, 
iff_wf, 
list_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
inlFormation, 
because_Cache, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
sqequalRule, 
inrFormation, 
productEquality, 
lambdaEquality, 
functionEquality, 
applyEquality, 
functionExtensionality, 
productElimination, 
comment, 
addLevel, 
impliesFunctionality, 
allFunctionality, 
setElimination, 
rename, 
setEquality, 
allLevelFunctionality, 
impliesLevelFunctionality, 
andLevelFunctionality, 
universeEquality, 
unionElimination, 
hyp_replacement, 
equalitySymmetry, 
dependent_set_memberEquality, 
applyLambdaEquality
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}[P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}u:T.  ((\mforall{}x<y\mmember{}[u  /  L].P[x;y])  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}y\mmember{}L.P[u;y])  \mwedge{}  (\mforall{}x<y\mmember{}L.P[x;y]))
Date html generated:
2017_10_01-AM-08_34_37
Last ObjectModification:
2017_07_26-PM-04_25_30
Theory : list!
Home
Index