Nuprl Lemma : sublist*_filter

[T:Type]. ∀P:T ⟶ 𝔹. ∀as,bs:T List.  (sublist*(T;as;bs)  sublist*(T;filter(P;as);filter(P;bs)))


Proof




Definitions occuring in Statement :  sublist*: sublist*(T;as;bs) filter: filter(P;l) list: List bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  sublist*: sublist*(T;as;bs) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B l_subset: l_subset(T;as;bs)
Lemmas referenced :  l_subset_wf filter_wf5 subtype_rel_dep_function bool_wf l_member_wf subtype_rel_self set_wf sublist_wf list_wf all_wf sublist_filter member_filter
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality lambdaEquality hypothesis setEquality independent_isectElimination setElimination rename because_Cache functionEquality universeEquality dependent_functionElimination productElimination independent_functionElimination independent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}as,bs:T  List.    (sublist*(T;as;bs)  {}\mRightarrow{}  sublist*(T;filter(P;as);filter(P;bs)))



Date html generated: 2019_10_15-AM-10_58_38
Last ObjectModification: 2018_09_17-PM-06_29_24

Theory : list!


Home Index