Nuprl Lemma : sublist*_filter
∀[T:Type]. ∀P:T ⟶ 𝔹. ∀as,bs:T List.  (sublist*(T;as;bs) 
⇒ sublist*(T;filter(P;as);filter(P;bs)))
Proof
Definitions occuring in Statement : 
sublist*: sublist*(T;as;bs)
, 
filter: filter(P;l)
, 
list: T List
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
sublist*: sublist*(T;as;bs)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
l_subset: l_subset(T;as;bs)
Lemmas referenced : 
l_subset_wf, 
filter_wf5, 
subtype_rel_dep_function, 
bool_wf, 
l_member_wf, 
subtype_rel_self, 
set_wf, 
sublist_wf, 
list_wf, 
all_wf, 
sublist_filter, 
member_filter
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
hypothesis, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
because_Cache, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
independent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}as,bs:T  List.    (sublist*(T;as;bs)  {}\mRightarrow{}  sublist*(T;filter(P;as);filter(P;bs)))
Date html generated:
2019_10_15-AM-10_58_38
Last ObjectModification:
2018_09_17-PM-06_29_24
Theory : list!
Home
Index