Nuprl Lemma : dual-plane-structure_subtype

DualPlaneStructure ⊆DualPlanePrimitives


Proof




Definitions occuring in Statement :  dual-plane-structure: DualPlaneStructure dual-plane-primitives: DualPlanePrimitives subtype_rel: A ⊆B
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T dual-plane-structure: DualPlaneStructure record+: record+ record-select: r.x eq_atom: =a y ifthenelse: if then else fi  btrue: tt uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] prop: or: P ∨ Q implies:  Q and: P ∧ Q exists: x:A. B[x]
Lemmas referenced :  subtype_rel_self all_wf dp-vec_wf sq_stable_wf dp-sep_wf stable_wf dp-perp_wf or_wf exists_wf dual-plane-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution dependentIntersectionElimination sqequalRule dependentIntersectionEqElimination thin cut hypothesis applyEquality tokenEquality introduction extract_by_obid isectElimination hypothesisEquality setEquality setElimination rename functionEquality productEquality equalityTransitivity equalitySymmetry

Latex:
DualPlaneStructure  \msubseteq{}r  DualPlanePrimitives



Date html generated: 2018_05_21-PM-09_44_48
Last ObjectModification: 2018_05_09-AM-11_47_42

Theory : matrices


Home Index