Nuprl Lemma : dual-plane-structure_subtype
DualPlaneStructure ⊆r DualPlanePrimitives
Proof
Definitions occuring in Statement : 
dual-plane-structure: DualPlaneStructure
, 
dual-plane-primitives: DualPlanePrimitives
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
dual-plane-structure: DualPlaneStructure
, 
record+: record+, 
record-select: r.x
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
subtype_rel_self, 
all_wf, 
dp-vec_wf, 
sq_stable_wf, 
dp-sep_wf, 
stable_wf, 
dp-perp_wf, 
or_wf, 
exists_wf, 
dual-plane-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
dependentIntersectionElimination, 
sqequalRule, 
dependentIntersectionEqElimination, 
thin, 
cut, 
hypothesis, 
applyEquality, 
tokenEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
setEquality, 
setElimination, 
rename, 
functionEquality, 
productEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
DualPlaneStructure  \msubseteq{}r  DualPlanePrimitives
Date html generated:
2018_05_21-PM-09_44_48
Last ObjectModification:
2018_05_09-AM-11_47_42
Theory : matrices
Home
Index