Nuprl Lemma : dual-plane-structure_wf
DualPlaneStructure ∈ 𝕌'
Proof
Definitions occuring in Statement : 
dual-plane-structure: DualPlaneStructure
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
dual-plane-structure: DualPlaneStructure
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
record+: record+, 
and: P ∧ Q
Lemmas referenced : 
dual-plane-primitives_wf, 
all_wf, 
dp-vec_wf, 
sq_stable_wf, 
dp-sep_wf, 
record+_wf, 
stable_wf, 
dp-perp_wf, 
or_wf, 
sq_exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
because_Cache, 
inhabitedIsType, 
universeIsType, 
applyEquality, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
tokenEquality, 
dependentIntersectionElimination, 
dependentIntersectionEqElimination, 
setEquality, 
setElimination, 
rename, 
setIsType, 
productEquality
Latex:
DualPlaneStructure  \mmember{}  \mBbbU{}'
Date html generated:
2019_10_16-AM-11_29_27
Last ObjectModification:
2018_10_10-AM-10_15_30
Theory : matrices
Home
Index