Nuprl Lemma : dual-plane-structure_wf

DualPlaneStructure ∈ 𝕌'


Proof




Definitions occuring in Statement :  dual-plane-structure: DualPlaneStructure member: t ∈ T universe: Type
Definitions unfolded in proof :  dual-plane-structure: DualPlaneStructure member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop: record+: record+ and: P ∧ Q
Lemmas referenced :  dual-plane-primitives_wf all_wf dp-vec_wf sq_stable_wf dp-sep_wf record+_wf stable_wf dp-perp_wf or_wf sq_exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid hypothesis lambdaFormation_alt sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt because_Cache inhabitedIsType universeIsType applyEquality cumulativity equalityTransitivity equalitySymmetry dependent_functionElimination tokenEquality dependentIntersectionElimination dependentIntersectionEqElimination setEquality setElimination rename setIsType productEquality

Latex:
DualPlaneStructure  \mmember{}  \mBbbU{}'



Date html generated: 2019_10_16-AM-11_29_27
Last ObjectModification: 2018_10_10-AM-10_15_30

Theory : matrices


Home Index