Nuprl Lemma : inverse-unique
∀[r:CRng]. ∀[n:ℕ]. ∀[A,B,C:Matrix(n;n;r)].
  ((((A*B) = I ∈ Matrix(n;n;r)) ∨ ((B*A) = I ∈ Matrix(n;n;r)))
  
⇒ (((A*C) = I ∈ Matrix(n;n;r)) ∨ ((C*A) = I ∈ Matrix(n;n;r)))
  
⇒ (B = C ∈ Matrix(n;n;r)))
Proof
Definitions occuring in Statement : 
identity-matrix: I
, 
matrix-times: (M*N)
, 
matrix: Matrix(n;m;r)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
rng: Rng
, 
crng: CRng
, 
nat: ℕ
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
invertible-matrix: invertible-matrix(r;n;A)
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
Lemmas referenced : 
crng_wf, 
nat_wf, 
iff_weakening_equal, 
rng_wf, 
true_wf, 
squash_wf, 
invertible-matrix-iff-left, 
identity-matrix_wf, 
matrix-times_wf, 
matrix_wf, 
equal_wf, 
matrix-times-assoc, 
matrix-times-id-left, 
matrix-times-id-right, 
or_wf
Rules used in proof : 
isect_memberEquality, 
axiomEquality, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
natural_numberEquality, 
intEquality, 
levelHypothesis, 
equalityUniverse, 
universeEquality, 
imageElimination, 
lambdaEquality, 
applyEquality, 
equalitySymmetry, 
equalityTransitivity, 
independent_functionElimination, 
productElimination, 
dependent_functionElimination, 
because_Cache, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
hypothesisEquality, 
dependent_pairFormation, 
lambdaFormation, 
introduction, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
unionElimination
Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[A,B,C:Matrix(n;n;r)].
    ((((A*B)  =  I)  \mvee{}  ((B*A)  =  I))  {}\mRightarrow{}  (((A*C)  =  I)  \mvee{}  ((C*A)  =  I))  {}\mRightarrow{}  (B  =  C))
Date html generated:
2018_05_21-PM-09_40_07
Last ObjectModification:
2017_12_14-PM-03_14_36
Theory : matrices
Home
Index