Nuprl Lemma : matrix-times-id-left

[k,m:ℕ]. ∀[r:Rng]. ∀[N:Matrix(k;m;r)].  ((I*N) N ∈ Matrix(k;m;r))


Proof




Definitions occuring in Statement :  identity-matrix: I matrix-times: (M*N) matrix: Matrix(n;m;r) nat: uall: [x:A]. B[x] equal: t ∈ T rng: Rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T matrix: Matrix(n;m;r) identity-matrix: I matrix-times: (M*N) all: x:A. B[x] top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] matrix-ap: M[i,j] mx: matrix(M[x; y]) nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: rng: Rng guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q squash: T so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s] true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  label: ...$L... t le: A ≤ B less_than': less_than'(a;b) subtract: m
Lemmas referenced :  matrix_ap_mx_lemma nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf matrix_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma rng_wf nat_wf equal_wf squash_wf true_wf rng_car_wf rng_sum_unroll_hi rng_times_wf rng_one_wf rng_zero_wf matrix-ap_wf subtype_rel_self iff_weakening_equal eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int infix_ap_wf rng_plus_wf intformeq_wf int_formula_prop_eq_lemma decidable__lt lelt_wf rng_sum_wf rng_times_zero rng_sum_0 rng_sig_wf decidable__equal_int rng_times_one rng_plus_comm rng_plus_zero subtype_rel_function int_seg_subtype false_wf not-le-2 not-equal-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality rename sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination hypothesisEquality setElimination intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality independent_pairFormation axiomEquality because_Cache productElimination unionElimination applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed instantiate equalityElimination int_eqReduceTrueSq promote_hyp cumulativity int_eqReduceFalseSq hyp_replacement applyLambdaEquality dependent_set_memberEquality functionEquality addEquality minusEquality multiplyEquality

Latex:
\mforall{}[k,m:\mBbbN{}].  \mforall{}[r:Rng].  \mforall{}[N:Matrix(k;m;r)].    ((I*N)  =  N)



Date html generated: 2018_05_21-PM-09_35_04
Last ObjectModification: 2018_05_19-PM-04_23_53

Theory : matrices


Home Index