Nuprl Lemma : matrix-times-id-left
∀[k,m:ℕ]. ∀[r:Rng]. ∀[N:Matrix(k;m;r)].  ((I*N) = N ∈ Matrix(k;m;r))
Proof
Definitions occuring in Statement : 
identity-matrix: I
, 
matrix-times: (M*N)
, 
matrix: Matrix(n;m;r)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
, 
rng: Rng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
matrix: Matrix(n;m;r)
, 
identity-matrix: I
, 
matrix-times: (M*N)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
matrix-ap: M[i,j]
, 
mx: matrix(M[x; y])
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
rng: Rng
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
label: ...$L... t
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
subtract: n - m
Lemmas referenced : 
matrix_ap_mx_lemma, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
matrix_wf, 
int_seg_properties, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
rng_wf, 
nat_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_car_wf, 
rng_sum_unroll_hi, 
rng_times_wf, 
rng_one_wf, 
rng_zero_wf, 
matrix-ap_wf, 
subtype_rel_self, 
iff_weakening_equal, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
infix_ap_wf, 
rng_plus_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__lt, 
lelt_wf, 
rng_sum_wf, 
rng_times_zero, 
rng_sum_0, 
rng_sig_wf, 
decidable__equal_int, 
rng_times_one, 
rng_plus_comm, 
rng_plus_zero, 
subtype_rel_function, 
int_seg_subtype, 
false_wf, 
not-le-2, 
not-equal-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-commutes, 
le-add-cancel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
functionExtensionality, 
rename, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
setElimination, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
axiomEquality, 
because_Cache, 
productElimination, 
unionElimination, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
equalityElimination, 
int_eqReduceTrueSq, 
promote_hyp, 
cumulativity, 
int_eqReduceFalseSq, 
hyp_replacement, 
applyLambdaEquality, 
dependent_set_memberEquality, 
functionEquality, 
addEquality, 
minusEquality, 
multiplyEquality
Latex:
\mforall{}[k,m:\mBbbN{}].  \mforall{}[r:Rng].  \mforall{}[N:Matrix(k;m;r)].    ((I*N)  =  N)
Date html generated:
2018_05_21-PM-09_35_04
Last ObjectModification:
2018_05_19-PM-04_23_53
Theory : matrices
Home
Index