Nuprl Lemma : matrix-times-assoc

[n,k,m,l:ℕ]. ∀[r:Rng]. ∀[M:Matrix(n;k;r)]. ∀[N:Matrix(k;m;r)]. ∀[K:Matrix(m;l;r)].
  (((M*N)*K) (M*(N*K)) ∈ Matrix(n;l;r))


Proof




Definitions occuring in Statement :  matrix-times: (M*N) matrix: Matrix(n;m;r) nat: uall: [x:A]. B[x] equal: t ∈ T rng: Rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T matrix: Matrix(n;m;r) matrix-times: (M*N) all: x:A. B[x] top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] matrix-ap: M[i,j] mx: matrix(M[x; y]) nat: rng: Rng guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: infix_ap: y true: True so_lambda: λ2x.t[x] so_apply: x[s] squash: T subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  matrix_ap_mx_lemma int_seg_wf matrix_wf rng_wf nat_wf rng_car_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rng_times_wf matrix-ap_wf rng_sum_wf rng_sum_swap equal_wf squash_wf true_wf rng_times_sum_r rng_times_sum_l subtype_rel_self iff_weakening_equal rng_times_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality rename sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination natural_numberEquality setElimination because_Cache hypothesisEquality axiomEquality productElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality independent_pairFormation applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality functionEquality imageMemberEquality baseClosed instantiate

Latex:
\mforall{}[n,k,m,l:\mBbbN{}].  \mforall{}[r:Rng].  \mforall{}[M:Matrix(n;k;r)].  \mforall{}[N:Matrix(k;m;r)].  \mforall{}[K:Matrix(m;l;r)].
    (((M*N)*K)  =  (M*(N*K)))



Date html generated: 2018_05_21-PM-09_34_40
Last ObjectModification: 2018_05_19-PM-04_23_20

Theory : matrices


Home Index