Nuprl Lemma : invertible-matrix-iff-left

r:CRng. ∀n:ℕ. ∀A:Matrix(n;n;r).  (invertible-matrix(r;n;A) ⇐⇒ ∃B:Matrix(n;n;r). ((B*A) I ∈ Matrix(n;n;r)))


Proof




Definitions occuring in Statement :  invertible-matrix: invertible-matrix(r;n;A) identity-matrix: I matrix-times: (M*N) matrix: Matrix(n;m;r) nat: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q equal: t ∈ T crng: CRng
Definitions unfolded in proof :  exists: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] nat: rev_implies:  Q rng: Rng crng: CRng prop: implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] ring_divs: in r true: True squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} infix_ap: y
Lemmas referenced :  crng_wf nat_wf iff_wf invertible-matrix_wf invertible-matrix-iff-det identity-matrix_wf matrix-times_wf equal_wf matrix_wf exists_wf rng_one_wf matrix-det_wf ring_divs_wf adjugate-property2 adjugate_wf matrix-scalar-mul_wf squash_wf true_wf matrix-scalar-mul-times rng_car_wf rng_sig_wf iff_weakening_equal matrix-scalar-mul-mul matrix-scalar-mul-1 rng_times_wf rng_wf det-times det-id
Rules used in proof :  independent_functionElimination dependent_functionElimination impliesFunctionality productElimination addLevel lambdaEquality sqequalRule because_Cache hypothesis rename setElimination independent_pairFormation hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_pairFormation natural_numberEquality applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}r:CRng.  \mforall{}n:\mBbbN{}.  \mforall{}A:Matrix(n;n;r).    (invertible-matrix(r;n;A)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}B:Matrix(n;n;r).  ((B*A)  =  I))



Date html generated: 2018_05_21-PM-09_40_02
Last ObjectModification: 2017_12_14-PM-01_49_13

Theory : matrices


Home Index