Nuprl Lemma : invertible-matrix-iff-left
∀r:CRng. ∀n:ℕ. ∀A:Matrix(n;n;r).  (invertible-matrix(r;n;A) 
⇐⇒ ∃B:Matrix(n;n;r). ((B*A) = I ∈ Matrix(n;n;r)))
Proof
Definitions occuring in Statement : 
invertible-matrix: invertible-matrix(r;n;A)
, 
identity-matrix: I
, 
matrix-times: (M*N)
, 
matrix: Matrix(n;m;r)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
, 
rng: Rng
, 
crng: CRng
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
ring_divs: a | b in r
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
infix_ap: x f y
Lemmas referenced : 
crng_wf, 
nat_wf, 
iff_wf, 
invertible-matrix_wf, 
invertible-matrix-iff-det, 
identity-matrix_wf, 
matrix-times_wf, 
equal_wf, 
matrix_wf, 
exists_wf, 
rng_one_wf, 
matrix-det_wf, 
ring_divs_wf, 
adjugate-property2, 
adjugate_wf, 
matrix-scalar-mul_wf, 
squash_wf, 
true_wf, 
matrix-scalar-mul-times, 
rng_car_wf, 
rng_sig_wf, 
iff_weakening_equal, 
matrix-scalar-mul-mul, 
matrix-scalar-mul-1, 
rng_times_wf, 
rng_wf, 
det-times, 
det-id
Rules used in proof : 
independent_functionElimination, 
dependent_functionElimination, 
impliesFunctionality, 
productElimination, 
addLevel, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
hypothesis, 
rename, 
setElimination, 
independent_pairFormation, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
dependent_pairFormation, 
natural_numberEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}r:CRng.  \mforall{}n:\mBbbN{}.  \mforall{}A:Matrix(n;n;r).    (invertible-matrix(r;n;A)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}B:Matrix(n;n;r).  ((B*A)  =  I))
Date html generated:
2018_05_21-PM-09_40_02
Last ObjectModification:
2017_12_14-PM-01_49_13
Theory : matrices
Home
Index